
#GlobalAzureAthensMay13th, 2023

#GlobalAzure

#GlobalAzureAthens

#GlobalAzure

#GlobalAzureAthens

Dear Global Azure Athens
2023 sponsors,
your support made all the
difference — thank you!

➢ Infrastructure as Code (IaC)

• Infrastructure as Code (IaC) Tools

➢ Terraform

• What is Terraform?

• Terraform Deployment Tools

• Terraform Workflow

• Main Terraform Commands

• Terraform Benefits

• Terraform Terminology

• Architecture diagram

➢ How the Terraform code looks

➢ Demo

• What is Infrastructure as Code (IaC)

#GlobalAzure

#GlobalAzureAthens

Infrastructure as

Code (IaC)

#GlobalAzure

#GlobalAzureAthens

“ With infrastructure as code (IaC), infrastructure, such as
networks, virtual machines, load balancers, and connection
topologies, is defined and deployed using DevOps
methodologies and versioning. ”

#GlobalAzure

#GlobalAzureAthens

Terraform

Terraform creates and manages resources on cloud platforms and other
services through their application programming Interfaces (APIs).

Providers enable Terraform to work with virtually any platform or service
with an accessible API.

Visual Studio Code

Azure PowerShell

Windows CMD

Bash

Windows Terminal

Azure Cloud Shell
Azure DevOps pipelines

Write
Define infrastructure in

configuration files

Plan
Review the changes Terraform

will make to your infrastructure

Apply
Terraform provisions

your infrastructure and

updates the state files

1000+

PROVIDERS

Write

Terraform configuration files define the

infrastructure resources to be created or

managed with Terraform.

Plan

The "terraform plan" command lets you

see how Terraform will modify your

infrastructure after it is initialized.

Apply

With "terraform apply", you can apply the

changes to your infrastructure once the

plan has been reviewed and approved.

terraform init

Main Terraform Commands

It downloads and installs any necessary plugins and modules to initialize a Terraform

working directory.

terraform plan

terraform apply

terraform validate

terraform destroy

>

>

>

>

>

This command, generates an execution plan showing what will happen when you apply

your configuration. In other words, it is a preview of the changes to your infrastructure

without having to make them.

It applies the changes to an infrastructure. Depending on the desired state, resources are

created, updated, or deleted.

It validates the terraform configuration files to check for any syntax errors.

This command, destroys the infrastructure resources managed by terraform.

Terraform Benefits
• Cloud platform agnostic

• Agentless

• Ease deployment

• Cost Estimation

It doesn’t require additional software. Nothing is needed to install. The

agentless approach in Terraform simplifies the infrastructure management

process, increases flexibility, improves security, and reduces costs.

Being agnostic cloud platform terraform means it can be used to manage

infrastructure resources across multiple cloud providers, such as Microsoft

Azure, Google Cloud, AWS, and others.

Organizations can deploy infrastructure resources faster, more efficiently, and

consistently while reducing errors and automating infrastructure deployments.

The cost estimation benefits of Terraform can help organizations better manage

their infrastructure spending, create more accurate budgets, optimize resource

usage, and choose the most cost-effective cloud provider for their needs.

Terraform Terminology
Resource: Resources are the most important element in the Terraform language. Each resource block describes one or

more infrastructure objects, such as virtual networks, compute instances, or higher-level components such as

DNS records.

Provider: A plugin that defines the APIs and resources available for a specific cloud platform or service. For Azure, the

provider is the "azurerm" provider.

Module: Modules are containers for multiple resources that are used together. A module consists of a collection of .tf

and/or .tf.json files kept together in a directory.

Input variable: Input variables let you customize aspects of Terraform modules without altering the module's own

source code.

Output variable: Output values make information about your infrastructure available on the command line and can

expose information for other Terraform configurations to use. Output values are similar to return values

in programming languages.

Data Source: Data sources allow Terraform to use information defined outside of Terraform, defined by another

separate Terraform configuration, or modified by functions.

State: Terraform must store state about your managed infrastructure and configuration. This state is used by

Terraform to map real world resources to your configuration, keep track of metadata, and to improve

performance for large infrastructures. This state is stored by default in a local file named "terraform.

Architecture Diagram

TF Configuration File (.tf)Dev/IT Terraform Core Terraform Azure Provider

> terraform init

How the terraform code looks?
terraform{

required_providers {

azurerm = {

source = "hashicorp/azurerm"

}

}

}

provider "azurerm" {

features {}

}

resource "azurerm_resource_group" "{resource group}" {

name="{resource group}"

location = "westeurope"

}

resource "azurerm_storage_account" "{storage account}" {

name = "{storage account}"

resource_group_name = azurerm_resource_group.{resource group}.name

location = azurerm_resource_group.{resource group}.location

account_tier = "Standard"

account_replication_type = "LRS"

}

resource "azurerm_storage_container" "images" {

name = "images"

storage_account_name = azurerm_storage_account.{storage account}.name

container_access_type = "private"

}

#GlobalAzure

#GlobalAzureAthens

#GlobalAzure

#GlobalAzureAthens

• https://github.com/topics/terraform-cost-estimation

• https://developer.hashicorp.com/terraform/cloud-docs/cost-estimation/azure

• https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

• https://github.com/hashicorp/terraform-provider-azurerm

• https://learn.microsoft.com/en-us/azure/developer/terraform/

#GlobalAzure

#GlobalAzureAthens

• Azure Batch Shipyard @
https://github.com/Azure/batch-shipyard

• Cognitive toolkit @ https://cntk.ai

• Learn more about Azure N-Series on Channel 9

• Re-visit Connect on Channel 9.

https://github.com/Azure/batch-shipyard
https://cntk.ai/
https://channel9.msdn.com/events/Ignite/New-Zealand-2016/M215
https://channel9.msdn.com/Events/Build/2016

A big thank you to our
sponsors!

https://bit.ly/GA23Evaluation

Please evaluate !

	Slide 1
	Slide 2: Deploy resources on Azure using IaC (Azure Terraform)
	Slide 3: Who Am I
	Slide 4
	Slide 5
	Slide 6: Infrastructure as Code (IaC)
	Slide 7: What is Infrastructure as Code (IaC)
	Slide 8: Infrastructure as Code (IaC) Tools
	Slide 9: Terraform
	Slide 10: What is Terraform?
	Slide 11: Terraform Deployment Tools
	Slide 12: Terraform Workflow
	Slide 13: Main Terraform Commands
	Slide 14: Terraform Benefits
	Slide 15: Terraform Terminology
	Slide 16: Architecture Diagram
	Slide 17: How the terraform code looks?
	Slide 18: Demo
	Slide 19
	Slide 20: Thank you
	Slide 21: Call to Action
	Slide 22

